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ON THE KOLOSOV-MUSKHELISHVI LI ANALOG 

FOR THE THREE-DIMENSIONAL STATE OF STRESS* 

O.G. GOMAN 

The axisymmetric problem of the theory of elasticity includes the known representa- 
tion of the stresses and displacements in terms of two p-analytic functions /l/, 
which is an analog of the Kolosov- Muskhelishvili formulas for the plane problem. 
Below analogous formulas are derived for every term of the Fourier series which are 
assumed to represent over the angular coordinate the stresses and displacements in 
the non-axisymmetric stress state. 

1. Consider the differential operators 

In accordance with the terminology adopted by G.N. Polozhii in /l/, we shall call the function 

y’< _ analytic 
tic, if 

f (z, r) = P (2, r) + iq (z, 4 = (i) 
(or simply (k)-analytic), (--k) analytic, (k)-antianalytic and (--k) antianaly- 

&(9”)=0, Kk(;)=O, Kk(;)=O, Mk(fj)=O (1.1) 

respectively. 
the conjugate 

The operator_lr;ikiS an analog of the operator of differentiation with respect to 
variable alaG in the complex plane 5 = r +iz (at k = 0 the above operatorsbe- _. ._. 

come identities). We note that for any (k)-analytic function f =p $- iq there exists a (k)- 
analytic "primitive" function F =P -/- iQ, such that f = b’FJt)z. The following relations hold for 
the (k) -analytic function p+iQ: 

zh(_;)=2(;;;:), &(;;;;)=o (1.2) 

2. We write the equations of the theory of elasticity as follows /2/: 

where z,r,8 is the cylindrical coordinate system, W denotes the axial, u the radial and U the 
tangential displacements. 
series 

Assuming that the displacements can be represented by the Fourier 
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u=zzol + i (~,~cosn~+ u,zsinn9) 
n-1 

we obtain the following system for values w,V, u,,V, v,,~,~, n> 1 (from now on the superscripts 
will be omitted): 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The stress state symmetrical with respect to the z axis will not be discussed; its represent- 
ation in terms of the p-analytic functions was given in /l/. Combining the equations (2.2) 
and (2.3) we obtain 

&+I (u, - v&t& *-+t?m -0 ( > (2.5) 

&-,(a, + vn) i- -& ( ++ 
++)=o (2.6) 

and making the substitution 

w, = PZ,, u, - v, = r@+')Yn, 6, = me n 

we reduce (2.1) and (2.5) to 

which can be splitted into two first order equations 

M % 0 1 en+’ aqa2 
2n+1 t 

n 
=-i-_2v ae,,jar 

(2.7) 

(2.8) 

(2.9) 

solvable one after the other. 
We note that 8, is a (2n + I)-harmonic function (since 6 is harmonic). The solution of 

(2.8) can be expressed, according to (l.l), by two (2n $ I)-analytic functions of the form 

where the first term represents the solution of the homogeneous 
a particular solution of the inhomogeneous equation. Moreover, 

’ 0 h’ 2(, -2q n 

Now the lower equation of the system (2.9) leads to 

f, = xp, + a,; x = :J-4v 

a,= r-* 
i 

nu 
2 - f & (i-u,)) 

r 

We write the function h,, conjugate to f, In the analogous form 

k = xrln t b, 

equation and the second term 
from (2.8) we see that 

(2.10) 



where CI, i ib, is an arbitrary (for the time being) (2n + 1) analytic function. Bringing in 

the "primitives" P, + iQ, and A,, -I- iB, for P,, + iq,, and a, + ib,, we write (2.9) in the form 

~~~+l(~)=~(~~::~f)+(-~~~~:)+(~~~~) 

The general solution of the above equation based on the properties of (2.1), is 

(2.11) 

where a,,+ iY, is an arbitrary (2n + 1) analytic function. 
When n = f~,(2.ll)yieldstherepresentationofG.N. Polozhii for the axisymmetric problem, 

which was obtained by a more complicated method (involving the techniques of p-integration). 

Introducing the substitutions 

LL', = F-nZd, IL, + V, = r+lXd, fin = r-en 

we can write (2.6) and (2.1) in the form 

1 iN,‘/ar 
=-i-_2v r-~n+lf9e,‘/az 

Solving this equation analogously to the previous one, we obtain 

where P,’ + iQ,,‘, A,,’ -I- iB,’ 

The representations 
three of these functions 

which follow from (2.10) 

and 0, + iY,,' are arbitrary (2n - l)-analytic 

aQn’ 
ar= 

(2.12) 

functions and 

(2.13) 

(2.11) and (2.12) contain six arbitrary functions. However, only 
are independent by virtue of the relations 

Q,’ = -rznP B ,,, ,,’ = ?‘A,, 

and (2.13), and also of the equation rZ, = r-"Z,,' which yields 

A, + On + FnY n ’ = 0 

THUS the expressions (2.11) and (2.12) contain only three basic arbitrary functions, and we 
can choose, as these functions, e.g. P, + iQ,,, @,, + iY,, and On’ + iYn’. The formulas (2.11) and 
(2.12) can be written in a different form by expressing the functions A,,‘and B, in terms of 
the basic functions. Using the condition of the (2n + I)-analyticity of (1.11, we find that 

B, = -Y,, + r*“@,,’ -I- 2n$,,’ 

where +,,I is a (-2n + I)- harmonic function such that 

In the same manner we find 

where the (2n -i- I)-harmonic 

The representations (2.11) 

A,,’ = -@,,I + F’Y,, + 2ncp,, 

function (F" is such that 

(D*=+, 
acp Yn=r2n+l. 
ar 

and (2.12) can now be written as 

2w,rWn E xP, - 22 (2.14) 

aQ?l 2 (u, - v,) rn+* = - xQ,, - 2~~ a% + 3re”+l dr + ++I -g- (r-W,‘) 

ap 1 
2 (u, + v,,) r-n+1 = - xP,’ - 22 + _ 3r-2”H aJd 

ar 
_ fzn+l G V”M 

Here the functions Q,, and P,'are expressed in termsof P,, 
Q,,’ = r-JJIP,, LS a conjugate of P,’ 

since Q,, is a conjugate of P, and 
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The fo?xrUas (2.11) and (2.12) or (2.14) are three-dimensional analog of the ~olosov- 
Muskhelishvili formulas. They contain three arbitrary real functions (e.g. q,,, p,. $,,I) so that 

according to the representation obtained every group of the coefficients of the Fourierseries 
of the same name (IL.,,~, u,,‘, q,‘) and (w,,~, u,,~, V,') is expressed only in terms of three arbitrary 
functions of the type shown. We shall not concern ourselves with the representation of the 
stresses. 

Let us compare the representation obtained with that of P.F. Papkovich, which has the 
following form in the cylindrical coordinate system: 

where e is a harmonic function and $(& Q?, Q~) a harmonic vector. If we expand all the func- 
tions into Fourier series in 8, then the group (w,,~,u,,~,Y,,~) of the coefficients will be expres- 
sed in terms of four arbitrary functions (cp 1 q lq~ ,,, m, ,,l,$,‘) and the group (zc,,?,u,,*,z,,?) of the coef- 
ficients by four arbitrary functions (cpn?,$z~z,qPlnar$P&12) where o,,~,en~,$m~,~zn:... are the coeffic- 
ients of the Fourier series for cp,&,u;, and de. This implies that for every group of the 
Fourier series coefficients of the same kind the number of arbitrary functions in the repres- 
entation obtained per unit is smaller than that in (2.15), and for this reason we can speak 
of advantage of the representation obtained here over that of Papkovich (and certain other 
representations). 

The formulas (2.14) become most compact when three (2nf i)-harmonic functions o,,p,,~,,are 
chosen as the basic functions and are such that 

Expressing in the above formulas every one of the ?"+I-harmonic functions o,,.+,, and vtl, with 

help of the integral Polozhii operator, by an analytic function /l/, we obtain then represent- 

ation for the three-dimensional displacements (U*,UTZ, n P ) in terms of three arbitrary analytic 

functions. This representation coincides exactly with that of A.Ia. Aleksandrov-Iu. I- 
Solov'eva /12/ and cm therefore serve to provide a stronger justification for the somewhat 
artificial method of representing the three-dimensional StreSS State in terms of the awilliary 
two-dimensional state developed by the above authors. 

Establishing the a&ais&.ble arbitrariness of the functions used for the given displace- 
ments reduces to the process of determining these functions from, e-g. the expressions (2-l*) 
with the zero left-hand parts. This yields 



p, = - & S,Pn + Kn’ Q,,= S,,z+f,, 

P ‘=ZnK ’ n n 
z+g n’ 0,' = 2 s,- K,P 

T,, = - & [(2+ + xf, + a,,) r-2n +4n (I+ 2x) K,r t xg,’ - 6n&,] 

qn,’ = - & [2 v+ 2X) s,z + %f, -3a, + rldn (4nK,z + xgn’ + 2n&)] 
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(2.16) 

where S,, K,,. f,,,g,,‘,a, and $,, are constants. The degree of arbitrariness of the functions w,W, 
II,&* and V&P under the given stresses is found in the same manner, and this yields the follow- 
ing result: 

a) n=l. The arbitrariness of the functions P,, Q1, PI’ and Q<is determined by the 
formulas (2.16); for the functions cpl and $iwe must supplement the right-hand sides of the 
formulas (2.16) with the terms --2b,z -l/,d, and --‘/ndlt, respectively (b, and d, are constants) ; 

b) 1122. The degree of arbitrariness is determined by the formulas (2.16). 
Inconclusionwenote thatthepresentapproach can alsobe used for compact derivation of the 

Kolosov-Muskhelishvili formulas. Thus the proposed method gives a unique procedure for ob- 
taining the Kolosov-Muskhelishvili and Polozhii formulas and their generalizations to the 
non-axially symmetric case. 
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